76 research outputs found

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    Genomic variants causing mitochondrial dysfunction are common in hereditary lower motor neuron disease.

    Get PDF
    Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms

    Captive breeding of European freshwater mussels as aconservation tool: A review

    Get PDF
    1. Freshwater mussels are declining throughout their range. Their importantecological functions along with insufficient levels of natural recruitment haveprompted captive breeding for population augmentation and questions about the usefulness and applicability of such measures. 2. This article reviews the current state of captive breeding and rearing programmes for freshwater mussels in Europe. It considers the various species, strategies, andtechniques of propagation, as well as the different levels of effort requiredaccording to rearing method, highlighting the key factors of success. 3. Within the last 30 years, 46 breeding activities in 16 European countries have been reported, mainly of Margaritifera margaritifera and Unio crassus. Some facilities propagate species that are in a very critical situation, such as Pseudunio auricularius, Unio mancus, and Unio ravoisieri, or multiple species concurrently. Insome streams, the number of released captive-bred mussels already exceeds the size of the remaining natural population. 4. Rearing efforts range from highly intensive laboratory incubation to lowerintensity methods using in-river mussel cages or silos. Most breeding efforts are funded by national and EU LIFE(+) grants, are well documented, and consider the genetic integrity of the propagated mussels. Limited long-term funding perspectives, the availability of experienced staff, water quality, and feeding/survival during early life stages are seen as the most important challenges. 5. Successful captive breeding programmes need to be combined with restoration ofthe habitats into which the mussels are released. This work will benefit from anevidence-based approach, knowledge exchange among facilities, and an overall breeding strategy comprising multiple countries and conservation units. aquaculture, captive breeding, conservation translocation, freshwater mussel culturing, Margaritifera margaritifera, propagation, reintroduction, Unio crassusCaptive breeding of European freshwater mussels as aconservation tool: A reviewpublishedVersio

    Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly

    Get PDF
    A failure in optic fissure fusion during development can lead to blinding malformations of the eye. Here, we report a syndrome characterized by facial dysmorphism, colobomatous microphthalmia, ptosis and syndactyly with or without nephropathy, associated with homozygous frameshift mutations in FAT1. We show that Fat1 knockout mice and zebrafish embryos homozygous for truncating fat1a mutations exhibit completely penetrant coloboma, recapitulating the most consistent developmental defect observed in affected individuals. In human retinal pigment epithelium (RPE) cells, the primary site for the fusion of optic fissure margins, FAT1 is localized at earliest cell-cell junctions, consistent with a role in facilitating optic fissure fusion during vertebrate eye development. Our findings establish FAT1 as a gene with pleiotropic effects in human, in that frameshift mutations cause a severe multi-system disorder whereas recessive missense mutations had been previously associated with isolated glomerulotubular nephropathy

    Clinical and genetic findings in a family with NMNAT1-associated Leber congenital amaurosis: case report and review of the literature

    No full text
    Leber congenital amaurosis (LCA) is a severe retinal dystrophy, typically manifesting in the first year of life. Mutations in more than 18 genes have been reported to date. In recent studies, biallelic mutations in NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 have been found to cause LCA. To broaden the knowledge regarding the phenotype of NMNAT1-associated LCA. Clinical ophthalmologic examinations were performed in two sisters with LCA. Whole exome sequencing was performed in one of the affected girls, with subsequent segregation analysis in the affected sister and unaffected parents. The literature was reviewed for reports of NMNAT1-associated LCA. Exome sequencing revealed the known NMNAT1 mutation c.25G > A (p.Val9Met) in a homozygous state. Segregation analysis showed the same homozygous mutation in the affected younger sister. Both parents were found to be heterozygous carriers of the mutation. The two girls both presented with severe visual impairment, nystagmus, central atrophy of the pigment epithelium, and pigment clumping in the periphery before the age of 6 months. Retinal vessels were attenuated. Both children were hyperopic. In the older sister, differential diagnosis included an inflammatory origin, but electrophysiology in her as well as her sister confirmed a diagnosis of LCA. Pallor of the optic nerve head was not present at birth but developed progressively. We confirmed a diagnosis of NMNAT1-associated LCA in two siblings through identification of the mutation (c.25G > A [p. Val9Met]) in a homozygous state. In infants with non-detectable electroretinogram (ERG), along with severe congenital visual dysfunction or blindness and central pigment epithelium atrophy with pigment clumping resembling scarring due to chorioretinitis, LCA due to NMNAT1 mutations should be considered

    Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior

    Get PDF
    Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this genetic paradox of invasive species has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential

    Mutational profiling in the peripheral blood leukocytes of patients with systemic mast cell activation syndrome using next-generation sequencing

    No full text
    Mast cell activation syndrome (MCAS) and systemic mastocytosis (SM) are two clinical systemic mast cell activation disease variants. Few studies to date have investigated the genetic basis of MCAS. The present study had two aims. First, to investigate whether peripheral blood leukocytes from MCAS patients also harbor somatic mutations in genes implicated in SM using next-generation sequencing (NGS) technology and a relatively large MCAS cohort. We also addressed the question, whether some of the previously as somatic reported mutations are indeed germline mutations. Second, to identify germline mutations of relevance to MCAS pathogenesis. Here, mutation frequency in the present MCAS cohort was compared to that in public- and in-house databases in the case of frequent variants, and co-segregation was investigated in multiply affected families in the case of rare variants (allele frequency < 1%). MCAS diagnoses were assigned according to current criteria. Twenty five candidate genes were selected on the basis of published findings for SM. NGS was performed using a 76kbp custom designed Agilent SureSelect Target Enrichment and an Illumina Hiseq2000 2x100bp sequencing run. NGS revealed 67 germline mutations. No somatic mutations were detected. None of the germline mutations showed unequivocal association with MCAS. Failure to detect somatic mutations was probably attributable to the dilution of mutated mast cell DNA in normal leukocyte DNA. The present exploratory association findings suggest that some of the detected germline mutations may be functionally relevant and explain familial aggregation. Independent replication studies are therefore warranted

    Genome-wide patterns of transposon proliferation in an evolutionary young hybrid fish

    No full text
    Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination-based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage (invasive Cottus, n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%-197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination-based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene-rich regions are unlikely to be directly affected
    corecore